Temperature-Adaptive Energy Reduction Techniques for Nano-CMOS Circuits Displaying Reversed temperature Dependence

نویسندگان

  • Ranjith Kumar
  • Volkan Kursun
چکیده

Temperature dependent propagation delay characteristics of CMOS circuits will experience a complete reversal in the near future. Contrary to the older technology generations, the speed of circuits in a 32 nm CMOS technology is enhanced when the temperature is increased at the nominal supply and threshold voltages. The enhancement of circuit speed provides new opportunities to lower the energy consumed by active circuits at elevated temperatures. Temperature-adaptive supply and threshold voltage tuning techniques are proposed in this paper to reduce the high temperature energy consumption without degrading the clock frequency in the active mode. Results indicate that the energy consumption can be lowered by up to 21% by dynamically scaling the supply voltage at elevated temperatures. An alternative technique based on temperature-adaptive reverse body-bias exponentially reduces the leakage currents as well as the parasitic junction capacitances of the MOSFETs. The temperature-adaptive threshold voltage tuning through reverse body-bias yields an active mode energy reduction by up to 29.8% as compared to the standard zero-body-biased circuits at high temperatures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature Adaptive and Variation Tolerant Cmos Circuits

The imbalanced utilization and the diversity of circuitry cause on-chip temperature gradients. Different sections of high-performance integrated circuits typically operate at different temperatures. Furthermore, environmental temperature fluctuations can cause significant variations in the die temperature. Temperature fluctuations alter the speed characteristics of CMOS circuits. Several techni...

متن کامل

Incorporating Effects of Process, Voltage, and Temperature Variation in BTI Model for Circuit Design

Bias Temperature Instability (BTI) is a major reliability issue in Nano-scale CMOS circuits. BTI effect results in the threshold voltage increase of MOS devices over time. Given the Process, Voltage, and Temperature (PVT) dependence of BTI effect, and the significant amount of PVT variations in Nano-scale CMOS, we propose a method of combining the effects of PVT variations and the BTI effect fo...

متن کامل

Adaptive Thermal Monitoring of Deep-Submicron CMOS VLSI Circuits

In integrated circuits accurate runtime sensing of on-chip temperature is required to establish efficient dynamic thermal management techniques. In this paper, we propose novel sensor allocation and placement algorithm and thermal sensing technique for indirect temperature estimation at arbitrary locations. As the experimental results indicate, the runtime thermal estimation method reduces temp...

متن کامل

Voltage optimization for simultaneous energy efficiency and temperature variation resilience in CMOS circuits

A design technique based on optimizing the supply voltage for simultaneously achieving energy efficiency and temperature variation insensitive circuit performance is proposed in this paper. The supply voltages that suppress the propagation delay variations when the temperature fluctuates are identified for a diverse set of circuits in 180 and 65 nm CMOS technologies. Circuits display temperatur...

متن کامل

Comparative Analysis of Sram Cell Designs in Nano-scale Technology

Bias Temperature Instability (BTI) is a major reliability issue in Nano-Scale CMOS circuits. BTI effect results in the threshold voltage increase of MOS devices over time. Given the Process, Voltage, and Temperature (PVT) dependence of BTI effect, and the significant amount of PVT variations in Nano-scale CMOS, we propose a method of combining the effects of PVT variations and the BTI effect fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Circuits, Systems, and Computers

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2008